Dipole Moments of Methyltropolones and their Bromoderivatives*

By Yukio Kurita, Toshikuni Mizuno, Toshio Mukai and Masaji Kubo

(Received November 19, 1952)

Proceeding with our work on the dipole moments of tropolone and its derivatives, (1) we made experiments on three methyltropolones and seven of their bromoderivatives. They were synthesized by one of us (2) and his collaborators. The position of substituents,

which had already been inferred from evidences in organic syntheses,⁽²⁾ could be confirmed by this physico-chemical method.

Experimental Results.—The apparatus and the method of measurement are already given in our previous paper. (1) The results are shown in Tables 1 and 2. The only datum found in literature to be compared with the present results is that of the compound II measured by Tyrell and Mills. (3)

^{*} Read before the scientific meeting of the Chemical Society of Japan held on April 4, 1952.

⁽¹⁾ Y. Kurits, T. Nozoe and M. Kubo, Bull. Chem. Soc. Japan, 24, 10, 99 (1951).

⁽²⁾ T. Nozoe, T. Mukai, M. Kunori, T. Muroi and K. Matsui, Sci. Reports Tohoku Univ., 1, 35, 242 (1952).

⁽³⁾ R. D. Haworth and J. D. Hobson, J. Chem. Soc., 1951, 561.

Table 1
Dielectric constant and density increments

	Dielectric constant and de	insteg i		
	Compounds	$_{ imes 10^5}^{w}$	Δε ×104	$^{\Delta d}_{ imes 10^5}$
1	Methyltropolone	192	192	47
	m. p. 50.5—51°	360	346	88
	25°	542	497	139
11	Methyltropolone	336	418	83
	m. p. 74—76°	598	728	141
	30°	940	1143	217
Ш	Methyltropolone	150	211	36
	m. p. 108—110°	331	422	75
	25°	512	663	123
IV	Bromomethyltropolone	321	267	128
	m. p. 123°	595	445	158
	25.60	1086	899	458
\mathbf{v}	Bromomethyltropolone	227	230	114
	m. p. 83—85°	514	507	215
	25°	674	677	282
VI	Bromomethyltropolone	230	80	138
	m. p. 171—172.5°	334	129	161
	250	549	191	209
VH	Dibromomethyltropolone	271	158	123
	m. p. 140°	532	324	257
	300	834	524	410
Vii	Tribromomethyltropolone	265	82	140
	m. p. 99.5—100.5°	588	176	309
	250	766	225	421
K	Bromomethyltropolone	213	194	94
	m. p. 115°	412	355	183
	30°	545	515	216
\mathbf{x}	Dibromomethyltropolone	205	139	104
	m. p. 140°	404	283	202
	300	630	404	321

=-0.4 D. The calculated values are compared with the experiment in Table 3. We could thus determine definitely the position of substituents for all the compounds studied, except the compound V, for which we wish to defer our final decision.

Table 3

The position of substituents in methyl tropolones and their derivatives

tropolones and their derivatives							
Com- pounds	$\mu_{\rm obs}({\rm D})$	$\mu_{calc}(D)$	The position of substituents				
I	3.27	3.41	3-Methyltropolone				
11	3.88	3.76	4-Methyltropolone				
Ш	3.94	3.90	5-Methyltropolone				
IV	4.05	4.17	7-Bromo- 3-methyltropolone-				
		1.95	5-Bromo- 3-methyltropolone				
v	4.42	$\int 4.24$	3-Bromo- 4-methyltropolone				
•		4.45	7-Bromo- 4-methyltropolone				
VI.	2.68	2.27	5-Bromo- 4-methyltropolone				
		2.82	3,5-Dibromo- 4-methyltropolone				
		3.13	5,7-Dibromo- 4-methyltropolone				
VII	4.19	4.42	3, 7-Dibromo- 4-methyltropolone				
M	3.02	2.93	3, 5, 7-Tribromo- 4-methyltropolone				
IX.	4.51	4.48	3-Bromo- 5-methyltropolone				
x	4.27	4.56	3,7-Dibromo- 5-methyltropolone				

Table 2

Dipole moments of methyltropolones and their derivatives

	t(°C.)	ε1	$d_1(g./cc.)$	α	β (g./cc.)	$P_{2^\infty}({ m cc.})$	$R_D({ m cc.})$	$\mu(D)$
1	25	2.2753	0.87129	8.69	0.263	255.5 ± 1.0	37.1	$3.27 \pm .01$
11	30	2.2637	0.86637	12.02	0.222	340.9 ± 1.6	37.1	$3.88 \pm .01$
IH	25	2.2744	0.87132	12.48	0.240	354.0 ± 8.2	37.1	$3.94 \pm .05$
\mathbf{w}	25.6	2.2693	0.87036	8.38	0.455	375.9 ± 20.6	44.8	$4.05 \pm .13$
v	25	2.2727	0.87163	9.94	0.373	445.2 ± 8.2	44.8	$4.42 \pm .05$
VI	25	2.2732	0.87221	3.39	0.224	192.0 ± 13.6	44.8	2.68 + .12
VII	30	2.2605	0.86614	6.51	0.510	406.6 ± 3.2	52.6	$4.19 \pm .02$
Vii	25	2.2732	0.87124	2.86	0.554	247.6 ± 5.2	60.4	$3.02 \pm .04$
IX.	30	2.2608	0.86648	9.54	0.372	453.8 ± 34.4	44.8	$4.51 \pm .19$
\mathbf{x}	30	2.2644	0.86627	6.22	0.509	389.5 ± 21.2	52.6	$4.27 \pm .13$

Their value of 3.9 D is in good agreement with ours.

Discussion.—The theoretical values for the moments of these compounds with substituents at various presumed positions were calculated as in our previous reports. The bond moment of methyl group substituted in tropolone was assumed to be equal to that in toluene; $\mu(C-CH_2)$

Summary

The dipole moments of three methyltropolones and their bromoderivatives were measured in benzene solution at 25° or 30°. The values obtained were compared with the theoretical data for the moments of these compounds with substituents at various presumed positions. 194 [Vol. 26, No. 4

The final decision of the position of substituents were made as shown in Table 3.

We wish to express our thanks to Prof. T. Nozoe of Tohoku University for his kind suggestions and encouragement. Our thanks are

also due to the Ministry of Education for aid in this research.

Chemical Institute, Faculty of Science, Nagoya University, Nagoya Chemical Institute, Faculty of Science, Tohoku University, Sendai